2012年10月1日,为庆祝中华人们共和国成立63周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是。(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望。
(本小题满分10分)选修41:几何证明选讲 如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点. 求证:(1)PA·PD=PE·PC;(2)AD=AE.
.已知函数 (Ⅰ)若函数在上为增函数,求正实数的取值范围; ( Ⅱ) 设,求证:
.已知函数, 其反函数为 (1) 若的定义域为,求实数的取值范围; (2) 当时,求函数的最小值; (3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出、的值;若不存在,则说明理由.
已知 Ⅰ.求的单调区间; Ⅱ.当时,求在定义域上的最大值;
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).