2012年10月1日,为庆祝中华人们共和国成立63周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是。(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望。
已知,,其中. (1)求证:与互相垂直; (2)若与的长度相等,求的值(为非零的常数).
中,分别是的对边,且. (1)求; (2)若,的面积为,求的值.
已知,,若,,求
已知是递增数列,其前项和为,,且,. (Ⅰ)求数列的通项; (Ⅱ)是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由; (Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.
已知椭圆的左右焦点分别为,.在椭圆中有一内接三角形,其顶点的坐标,所在直线的斜率为. (Ⅰ)求椭圆的方程; (Ⅱ)当的面积最大时,求直线的方程.