(本小题满分12分)四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,∥,⊥,为上一点,且.(Ⅰ)求证⊥;(Ⅱ)求二面角的正弦值.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知椭圆C的两焦点分别为,长轴长为6。 ⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
已知的图象经过点,且在处的切线方程是。(1)求的解析式;(2)求的单调递增区间。
(本小题满分10分) 已知抛物线的焦点坐标是F(0,-2), 求它的标准方程。
如图,在直三棱柱(侧棱垂直与底面)中,,,,,点D是的中点. ⑴ 求证:; ⑵ 求证:平面; ⑶ 求直线与直线所成角的余弦值.