如图,PA⊥平面ABC,平面PAB⊥平面PBC 求证:AB⊥BC
附加题) 如图所示,在直三棱柱ABC—A1B1C1中,D是棱CC1的中点。 (1)证明:A1D⊥平面AB1C1; (2)求二面角B—AB1—C1的余弦值;
附加题) 已知的极坐标方程分别是(a是常数). (1)分别将两个圆的极坐标方程化为直角坐标方程; (2)若两个圆的圆心距为的值。
附加题) 已知矩阵, (1)计算AB; (2)若矩阵B把直线的方程。
若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:,则称直线:为函数的“隔离直线”。已知(其中e为自然对数的底数)。试问: (1)函数的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由; (2)函数是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由。
已知函数 (1)若函数的图象的一个公共点恰好在x轴上,求a的值; (2)若p和q是方程的两根,且满足证明: 当