已知函数(、为常数).(1)若,解不等式;(2)若,当时,恒成立,求的取值范围.
(本小题共13分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率.
(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值;(2)当时,若对任意,均有,求实数的取值范围;(3)若,对任意、,且,试比较与 的大小.
(本小题满分12分)在数列中,.(1)求的值;(2)求数列的通项公式;(3)求的最大值.
(本小题共12分)在直角坐标系中,动点P到两定点,的距离之和等于4,设动点P的轨迹为,过点的直线与交于A,B两点.(1)写出的方程;(2)设d为A、B两点间的距离,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.
(本小题共12分)甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.(1)求一个“单位射击组”为“单位进步组”的概率;(2)记完成三个“单位射击组”后出现“单位进步组”的次数,求的分布列与数学期望.