某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设.(1)将五边形的面积表示为的函数;(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且. (1)求证:对任意的,都有AC⊥BE; (2)若二面角C-AE-D的大小为,求的值.
在中,,,分别是角A,B,C的对边,且. (1)求角的值; (2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.
已知函数,(其中常数) (1)当时,求的极大值; (2)试讨论在区间上的单调性; (3)当时,曲线上总存在相异两点、,使得曲线在点、处的切线互相平行,求的取值范围.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2, (1)试求椭圆的方程; (2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
如图,为圆的直径,点、在圆上,,矩形的边垂直于圆所在的平面,且,. (1)求证:平面; (2)设的中点为,求证:平面; (3)求三棱锥的体积.