已知圆M: ,直线,上一点A的横坐标为,过点A作圆M的两条切线,,切点分别为B,C. (1)当时,求直线,的方程; (2)当直线,互相垂直时,求的值; (3)是否存在点A,使得?若存在,求出点A的坐标,若不存在,请说明理由.
(本小题满分12分) 如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于,两点. ⑴如果、两点的纵坐标分别为、,求和; ⑵在⑴的条件下,求的值; ⑶已知点,求函数的值域.
已知函数. (Ⅰ)若,试讨论函数的单调性; (Ⅱ)设.如果对任意,,求的取值范围.
已知椭圆两焦点分别为F1、F2、P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点 (1)求P点坐标; (2)求证直线AB的斜率为定值; (3)求△PAB面积的最大值。
已知斜三棱柱,,,在底面上的射影恰为的中点,又知。 (I)求证:平面; (II)求二面角余弦值的大小。
已知等差数列,公差大于,且是方程的两根,数列前项和. (Ⅰ)写出数列、的通项公式; (Ⅱ)记,求证: