在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.(Ⅰ)写出C的方程;(Ⅱ)若,求k的值;(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||
(本小题满分10分)(1)等差数列{}中,已知a1=,a2+a5=4,=33,试求n的值.(2)在等比数列{}中,a5=162,公比q=3,前n项和=242,求首项a1和项数n.
在平面直角坐标系中,已知以O为圆心的圆与直线恒有公共点,且要求使圆O的面积最小.(1)写出圆O的方程;(2)圆O与x轴相交于A、B两点,圆内动点P使、、成等比数列,求的范围;(3)已知定点Q(−4,3),直线与圆O交于M、N两点,试判断是否有最大值,若存在求出最大值,并求出此时直线的方程,若不存在,给出理由.
如图,在直四棱柱中,已知,.(1)求证:;(2)设是上一点,试确定的位置,使平面,并证明.
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
如图,平行四边形中,,将沿折起到的位置,使平面平面 (I)求证:(Ⅱ)求三棱锥的侧面积。