(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;(Ⅱ)当BE为何值时,PA与平面PDE所成角的大小是45°?
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
已知数列的前n项和为,且, (1)求证:是等差数列; (2)求; (3)若
已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点,G为线段PC的中点. (1)当E为PD的中点时,求证: (2)当时,求证:BG//平面AEC.
已知 (1)求的最小值及此时x的取值集合; (2)把的图象向右平移个单位后所得图象关于y轴对称,求m的最小值。
已知函数在处取得极值。 ⑴讨论和是函数的极大值还是极小值; ⑵过点作曲线的切线,求此切线方程。