围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数;⑵写出f(x)的单调区间,并证明;⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本小题满分10分) 解关于不等式.
(本小题满分10分) 在直角坐标系中,圆的参数方程为(为参数,)。以为极点,轴正半轴为极轴,并取相同的单位建立极坐标系,直线的极坐标方程为。写出圆心的极坐标,并求当为何值时,圆上的点到直线的最大距离为3.
(本小题满分10分) 如图,已知是的切线,为切点,是的割线,与交于两点,圆心在的内部,点是的中点. (1)证明四点共圆; (2)求的大小.
(本小题满分12分) 已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)当时,求在上的最大值和最小值; (3) 当时,求证:对大于1的任意正整数,都有。
已知直线与曲线交于不同的两点,为坐标原点. (1)若,求证:曲线是一个圆; (2)若,当且时,求曲线的离心率的取值范围.