围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数;⑵写出f(x)的单调区间,并证明;⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本小题满分12分) 设函数 (1)设,讨论函数的单调性; (2)若对任意成立,求实数的取值范围。
(本小题满分12分) 已知椭圆的离心率为,焦点到相应准线的距离为 (1)求椭圆C的方程 (2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。
(本小题满分12分) 设的前n项和,对,都有 (1)求数列的通项公式; (2)设的前n项和,求证:
(本小题满分12分) 如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,E是CD的中点,PA底面ABCD,PA=4 (1)证明:若F是棱PB的中点,求证:EF//平面PAD; (2)求平面PAD和平面PBE所成二面角(锐角)的大小。
(本小题满分12分) 小明参加一次比赛,比赛共设三关。第一、二关各有两个问题,两个问题全答对,可进入下一关。第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得价值分别为100、300、500元的奖励。小明对三关中每个问题回答正确的概率依次为、、,且每个问题回答正确与否相互独立。 (1)求小明过第一关但未过第二关的概率; (2)用表示小明所获得奖品的价值,求的分布列和期望。