围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数;⑵写出f(x)的单调区间,并证明;⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
集合. (1)当时,求; (2)若是只有一个元素的集合,求实数的取值范围.
已知,函数. (I)证明:函数在上单调递增; (Ⅱ)求函数的零点.
已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.
在长方体中,截下一个棱锥,求棱锥的体积与剩余部分的体积之比.
已知直线经过点,且斜率为. (I)求直线的方程; (Ⅱ)若直线与平行,且点P到直线的距离为3,求直线的方程.