已知复数同时满足下列两个条件:①的实部和虚部都是整数,且在复平面内对应的点位于第四象限;②.(Ⅰ)求出复数;(Ⅱ)求.
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点. (Ⅰ)求抛物线的方程; (Ⅱ)设点为直线上的点,求直线的方程; (Ⅲ) 当点在直线上移动时,求的最小值.
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋. (Ⅰ)写出数量积X的所有可能取值; (Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.
在四棱锥中,底面是正方形,侧面是正三角形,平面底面. (Ⅰ)如果为线段VC的中点,求证:平面; (Ⅱ)如果正方形的边长为2, 求三棱锥的体积
在等差数列{an}中,为其前n项和,且 (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,求数列的前项和.
已知函数,,且的解集为. (Ⅰ)求的值; (Ⅱ)若,且,求证: