在四棱锥中,底面是正方形,侧面是正三角形,平面底面.(Ⅰ)如果为线段VC的中点,求证:平面;(Ⅱ)如果正方形的边长为2, 求三棱锥的体积
(本小题满分12分)已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.(Ⅰ)若用数组中的分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组的所有情形,并回答一共有多少种;(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由。
(本小题满分12分)在中,分别是角的对边,若,。(1)求角的大小;(2)若求面积。
已知 f ( x ) = a x + 1 ( a ∈ R ) ,不等式 f ( x ) ≤ 3 的解集为 { x | - 2 ≤ x ≤ 1 } .
(Ⅰ)求 a 的值; (Ⅱ)若 f ( x ) - 2 f ( x 2 ) ≤ k 恒成立,求 k 的取值范围.
在直角坐标 x O y 中,圆 C 1 : x 2 + y 2 = 4 ,圆 C 2 : x - 2 2 + y 2 = 4 . (Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1 , C 2 的极坐标方程,并求出圆 C 1 , C 2 的交点坐标(用极坐标表示); (Ⅱ)求出 C 1 与 C 2 的公共弦的参数方程.
如图, ⊙ O 和 ⊙ O ` 相交于 A , B 两点,过 A 作两圆的切线分别交两圆于 C , D 两点,连接 D B 并延长交 ⊙ O 于点 E .证明
(Ⅰ) A C · B D = A D · A B ; (Ⅱ) A C = A E .