设f(x)=. (1)证明:f(x)在其定义域上的单调性;(2)证明: 方程f-1(x)=0有惟一解;(3)解不等式f[x(x-)]<.
已知f(x)=,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.
已知是定义在上的增函数,且满足,。(1)求(2)求不等式的解集
已知函数满足,且,令.(1)求函数的表达式;(2)求函数的最小值.
已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.(1)A∩B=;(2)A⊆(A∩B).
已知A⊆M={x|x2-px+15=0,x∈R},B⊆N={x|x2-ax-b=0,x∈R},又A∪B={2,3,5},A∩B={3},求p,a和b的值.