某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.
设函数.(1)若,求函数的极值;(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对a的取值范围进行讨论)(3)在(2)的条件下,设,函数.若存在使得成立,求的取值范围.
(本小题12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。(1)求椭圆方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点。证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。第21题图
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.(见下一页图)观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率。
已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上。 (Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足bn=(n∈N*),求数列{bn}的前n项和。
已知向量,函数的图像上一个最高点的坐标为,与之相邻的一个最低点的坐标. (1)求的解析式. (2)在△中,是角所对的边,且满足,求角的大小以及取值范围.