小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.(Ⅰ)写出数量积X的所有可能取值;(Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.
在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
已知函数. (1)求函数的极小值; (2)求函数的递增区间.
已知二次函数在区间 上有最大值,最小值. (1)求函数的解析式; (2)设.若在时恒成立,求的取值范围.
如图,四棱锥,底面是矩形,平面底面,,平面,且点在上. (1)求证:; (2)求三棱锥的体积; (3)设点在线段上,且满足,试在线段上确定一点,使得平面.
已知以点为圆心的圆经过点和,且圆心在直线上. (1)求圆的方程; (2)设点在圆上,求的面积的最大值.