小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.(Ⅰ)写出数量积X的所有可能取值;(Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.
(本小题满分12分)数列满足,数列满足,,. (Ⅰ)求数列,的通项公式; (Ⅱ)设,求数列的前n项和.
(本小题满分10分)如图,三棱锥中,平面ABC,. (1)求三棱锥的体积; (2)证明:在线段PC上存在点M,使得,并求此时的值.
已知函数, (1)当时,判断并证明函数的单调性; (2)当时,求函数的最小值.
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一天能往返16次,如果每次拖7节车厢,则每天能往返10次.(注明:往、返各算一次) (1)若每天往返的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式; (2)在(1)的条件下,每节车厢能载乘客110人,问这列火车每天往返多少次才能使运营人数最多?并求出每天最多运营人数.
(本小题满分12分)已知正项数列的首项为,前项和为满足. (1)求证:为等差数列,并求数列的通项公式; (2)记数列的前项和为,若对任意的,不等式恒成立 ,求实数的取值范围.