(本小题满分16分)某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成的函数;(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.
(本小题满分12分)已知关于的一元二次函数,(1)设集合,分别从集合和中随机取一个数为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点, 求函数在区间上是增函数的概率
选修4-5:不等式选讲 已知函数不等式的解集为 (1)求实数a的值; (2)若对一切实数x恒成立,求实数c的取值范围。
选修4-1:几何证明选讲 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交于⊙O于点E,D,连接EC,CD。 (1)试判断直线AB与⊙O的位置关系,并加以证明; (2)若,⊙O的半径为3,求OA的长。
设. (1)若在上存在单调递增区间,求的取值范围; (2)当时,在上的最小值为,求在该区间上 的最大值.
已知椭圆G:.过点(m,0),作圆的切线,交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.