(8分)如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,,于A处测得水深,于B处测得水深,于C处测得水深,求∠DEF的余弦值。
已知函数,. (Ⅰ)若函数在处取得极值,试求的值,并求在点处的切线方程; (Ⅱ)设,若函数在上存在单调递增区间,求的取值范围.
数列的前项和记为, (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求.
设函数其中 (Ⅰ)求的单调区间; (Ⅱ) 讨论的极值.
如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC. (1)若N为线段PB的中点,求证:EN⊥平面PDB; (2)若=,求平面PBE与平面ABCD所成的锐二面角的大小.
设△ABC的内角A,B,C所对的边长分别为a,b,c,m=(cosA,cosC),n=(c-2b,a)且m⊥n. (1)求角A的大小; (2)若角B=,BC边上的中线AM的长为,求△ABC的面积.