某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量;(2)求样本中净重大于或等于98克并且小于104克的产品的个数;(3)求样本产品净重的中位数的估计值.(小数点后保留一位)
已知,证明:,并利用上述结论求的最小值(其中.
设数列满足. (1)求; (2)由(1)猜想的一个通项公式,并用数学归纳法证明你的结论;(本题满分13分)
设函数,已知曲线在点处的切线方程是. (1)求的值;并求出函数的单调区间; (2)求函数在区间上的最值.
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题: ①任意三次函数都关于点对称: ②存在三次函数,若有实数解,则点为函数的对称中心; ③存在三次函数有两个及两个以上的对称中心; ④若函数,则: 其中所有正确结论的序号是().
已知向量=(sin(+x),cosx),="(sinx,cosx)," f(x)= ·. (1)求f(x)的最小正周期和单调增区间; (2)如果三角形ABC中,满足f(A)=,求角A的值.