、(本小题满分12分)某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内)(1)求某居民月收入在内的频率;(2)根据该频率分布直方图估计居民的月收入的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?
(本小题满分12分) 已知椭圆的左、右焦点分别为,离心率,右准线方程为。 (I)求椭圆的标准方程; (II)过点的直线与该椭圆交于两点,且,求直线的方程。
(本小题满分14分) 已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且 (Ⅰ求椭圆的离心率; (Ⅱ)直线AB的斜率; (Ⅲ)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。
(本小题满分12分) 已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于. (1)求线段的中点的轨迹的方程; (2)设轨迹与轴交于两点,在上任取一点,直线分别交轴于两点.求证:以为直径的圆过两定点.
(本小题满分14分) 已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合. (1)若点是线段的中点,试求线段的中点的轨迹方程; (2)若曲线与有公共点,试求的最小值.
(本小题满分14分) 过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、。 (Ⅰ)当时,求证:⊥; (Ⅱ)记、、的面积分别为、、,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。