(本小题满分9分)已知关于的方程.(Ⅰ)若方程表示圆,求的取值范围;(Ⅱ)若圆与直线相交于两点,且,求的值.
(满分12分)如图,在平面直角坐标系中,为坐标原点,点,且点是轴上动点,过点作线段的垂线交轴于点,在直线上取点,使。(1)求动点的轨迹的方程;(2)点是直线上的一个动点,过点作轨迹的两条切线切点分别为,求证:
(满分12分)已知数列的前n项和为,对一切正整数n,点都在函数的图像上,且过点的切线的斜率为。(1)求数列的通项公式;(2)若,求数列的前n项和;(3)数列满足,求数列的最值。
(满分12分)如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点。(1)求证:EF⊥CD;(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;(3)求DB与平面DEF所成角的大小。
(满分12分)在中,已知内角,边。设内角,周长为。(1)求函数的解析式和定义域;(2)求的最大值。
如果展开式中第4项与第6项的系数相等,求n及展开式中的常数项.