(本小题满分12分)已知(其中,为实数).(I)若在处取得极值为2,求、的值;(II)若在区间上为减函数且,求的取值范围.
已知正项数列中,,点在函数的图象上,数列的前n项和.(Ⅰ)求数列和的通项公式;(Ⅱ)设,求的前n项和.
从某批产品中,有放回地抽取产品2次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率为0.84.(Ⅰ)求事件“从该批产品中任取1件产品,取到的是二等品”的概率p;(Ⅱ)若从20件该产品中任意抽取3件,求事件B:“取出的3件产品中至少有一件二等品”的概率.
已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)若存在,使不等式成立,求实数m的取值范围.
已知数列满足+=4n-3(n∈).(1)若数列是等差数列,求的值;(2)当=2时,求数列的前n项和;(3)若对任意n∈,都有≥5成立,求的取值范围.
已知函数=+,a≠0且a≠1.(1)试就实数a的不同取值,写出该函数的单调增区间;(2)已知当x>0时,函数在(0,)上单调递减,在(,上单调递增,求a的值并写出函数的解析式;(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.