(本小题满分12分)已知(其中,为实数).(I)若在处取得极值为2,求、的值;(II)若在区间上为减函数且,求的取值范围.
已知函数(为实常数) . (1)当时,求函数在上的最大值及相应的值; (2)当时,讨论方程根的个数. (3)若,且对任意的,都有,求实数a的取值范围.
已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方,. (1)求椭圆的离心率的取值范围; (2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程; (3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
如图,在四棱柱中,已知平面,且. (1)求证:; (2)在棱BC上取一点E,使得∥平面,求的值.
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C. (1)若,求矩形ABCD面积; (2)若,求矩形ABCD面积的最大值.
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点. (1)证明:DE∥平面PBC; (2)证明:DE⊥平面PAB.