如图, F 为双曲线 C : x 2 a 2 - y 2 b 2 = 1 a > 0 , b > 0 的右焦点。 P 为双曲线 C 右支上一点,且位于 x 轴上方, M 为左准线上一点, O 为坐标原点。已知四边形 O F P M 为平行四边形, P F = λ O F .
(Ⅰ)写出双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时,经过焦点 F 且品行于 O P 的直线交双曲线于 A 、 B 点,若 A B = 12 ,求此时的双曲线方程.
已知函数,(1)设常数,若在区间上是增函数,求的取值范围;(2)设集合,,若,求的取值范围.
在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1) 求的值;(2) 若cosB=,,求的面积.
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求的解析式; (2)当,求的值域.
已知(1)求;(2)求向量在向量方向上的投影.
已知函数,.(Ⅰ)若函数依次在处取到极值.求的取值范围;(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.