(本小题满分14分)建造一容积为8深为2m的长方体形无盖水池,每池底和池壁造价各为120元和80元.(1)求总造价关于一边长x的函数解析式,并指出该函数的定义域;(2)判断(1)中函数在和上的单调性;(3)如何设计水池尺寸,才能使总造价最低;
已知},,若,求实数的取值集合。
设,,求:(1); (2)。
已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.①求椭圆C的方程.②当⊿AMN的面积为时,求k的值.
已知函数,曲线过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直。①求a,b的值;②求该函数的单调区间和极值。③若函数在上是增函数,求m的取值范围.
已知命题P: 命题Q:<0.若命题P是真命题,命题Q是假命题,求实数x的取值范围.