如图,在四棱锥 P - A B C D 中, P A ⊥ 平面 A B C D ,底面 A B C D 是菱形, A B = 2 , ∠ B A D = 60 ° .
(Ⅰ)求证: B D ⊥ 平面 P A C ;
(Ⅱ)若 P A = A B ,求 P B 与 A C 所成角的余弦值; (Ⅲ)当平面 P B C 与平面 P D C 垂直时,求 P A 的长.
(本小题满分13分)椭圆:与抛物线:的一个交点为M,抛物线在点M处的切线过椭圆的右焦点F.(Ⅰ)若M,求和的标准方程;(II)求椭圆离心率的取值范围.
(本小题满分13分)随机变量X的分布列如下表如示,若数列是以为首项,以为公比的等比数列,则称随机变量X服从等比分布,记为Q(,).现随机变量X∽Q(,2).
(Ⅰ)求n 的值并求随机变量X的数学期望EX;(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.
(本小题满分10分)选修4-5《不等式选讲》.已知a+b=1,对a,b∈(0,+∞),使+≥|2x-1|-|x+1|恒成立,求x的取值范围.
(本小题满分10分)选修4-1《几何证明选讲》.已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点(Ⅰ)求证:BD平分∠ABC(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
(本小题满分12分)已知函数f(x)=-x (e为自然对数的底数).(Ⅰ)求f(x)的最小值;(Ⅱ)不等式f(x)>ax的解集为P,若M={x|≤x≤2}且M∩P≠,求实数a的取值范围;(Ⅲ)已知n∈N﹡,且=(t为常数,t≥0),是否存在等比数列{},使得b1+b2+…=?若存在,请求出数列{}的通项公式;若不存在,请说明理由.