小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当<时,求实数的取值范围.
如图,在四棱锥中,底面,是直角梯形,,,是的中点。 (1)求证:平面平面 (2)若二面角的余弦值为,求直线与平面所成角的正弦值.
某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下: (1)比较这两名队员在比赛中得分的均值和方差的大小; (2)以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分的次数的分布列和均值.
已知数列满足,且(n2且n∈N*). (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前n项之和,求,并证明:.
设函数 (I)画出函数的图象; (II)若不等式,恒成立,求实数a的取值范围.