(本小题14分)在等比数列中,,公比,且,又与的等比中项是2,(1)求数列的通项公式;(2)设,数列的前项和为,求.
设函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,不等式恒成立,求实数的取值范围;(Ⅲ)关于的方程在上恰有两个相异实根,求的取值范围.
将圆上的点的横坐标保持不变,纵坐标变为原来的倍,得到曲线.设直线与曲线相交于、两点,且,其中是曲线与轴正半轴的交点.(Ⅰ)求曲线的方程;(Ⅱ)证明:直线的纵截距为定值.
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;(Ⅲ)求异面直线与所成的角.
同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体),两颗骰子向上的点数之和记为.(Ⅰ)求的概率;(Ⅱ)求的概率.
已知,,(Ⅰ)若,求的解集;(Ⅱ)求的周期及增区间.