(本小题满分12分)一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关.(1)求在这项游戏中第三关过关的概率是多少?(2) 若规定n≤3, 求某人的过关数ξ的期望.
(本小题满分14分)已知f(x)=ln(1+x)-x.(Ⅰ)求f(x)的最大值;(Ⅱ)数列{an}满足:an+1= 2f' (an) +2,且a1=2.5,= bn,⑴数列{ bn+}是等比数列 ⑵判断{an}是否为无穷数列。(Ⅲ)对n∈N*,用⑴结论证明:ln(1++)<;
(本小题满分13分)已知数列,定义其倒均数是。(1)求数列{}的倒均数是,求数列{}的通项公式;(2)设等比数列的首项为-1,公比为,其倒数均为,若存在正整数k,使恒成立,试求k的最小值。
(本小题满分13分)有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时,车距为2.66个车身长。(1)写出车距关于车速的函数关系式;(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
(本小题满分13分)△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c.向量=, =满足//.(1)求的取值范围;(2)若实数x满足abx=a+b,试确定x的取值范围.
(本小题满分13分)已知函数,的最大值是1且其图像经过点. (1)求的解析式; (2)已知,且,求的值