(本小题满分12分)已知直线两直线中,内角A,B,C对边分别为时,两直线恰好相互垂直;(I)求A值;(II)求b和的面积
(本小题满分14分)已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛物线的焦点F.(I)求抛物线和椭圆的标准方程;(II)过点F的直线交抛物线于A、B两不同点,交轴于点N,已知,求证:为定值.(III)直线交椭圆于P,Q两不同点,P,Q在x轴的射影分别为,,,若点S满足:,证明:点S在椭圆上.
(本小题满分13分)已知处的切线为(I)求的值;(II)若的极值;(III)设,是否存在实数(,为自然常数)时,函数的最小值为3.
(本小题满分12分)已知是等差数列的前n项和,数列是等比数列,恰为的等比中项,圆,直线,对任意,直线都与圆C相切.(I)求数列的通项公式;(II)若时,的前n项和为,求证:对任意,都有
(本小题满分12分)如图,ABCD为梯形,平面ABCD,AB//CD,,E为BC中点,连结AE,交BD于O.(I)平面平面PAE(II)求二面角的大小(若非特殊角,求出其余弦即可)