(本小题满分13分)已知处的切线为(I)求的值;(II)若的极值;(III)设,是否存在实数(,为自然常数)时,函数的最小值为3.
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.(1)求证:(2)若AQ=2AP,,BP=2,求QD.
已知函数在点处的切线与x轴平行.(1)求实数a的值及的极值;(2)是否存在区间,使函数在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;(3)如果对任意的,有,求实数k的取值范围.
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.
已知函数.(1)求的单调递增区间;(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.