(本小题满分13分)已知处的切线为(I)求的值;(II)若的极值;(III)设,是否存在实数(,为自然常数)时,函数的最小值为3.
直四棱柱中,底面是等腰梯形,,,为的中点,为中点. (1) 求证:; (2) 若,求与平面所成角的正弦值.
已知函数 (I)求函数的最小值和最小正周期; (II)已知内角,,的对边分别为,,,且,若向量共线,求的值。
..(本小题满分14分)定义在上的函数,如果满足;对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数. (Ⅰ)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (Ⅱ)若是上的有界函数,且的上界为3,求实数的取值范围; (Ⅲ)若,求函数在上的上界的取值范围.
..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题: (Ⅰ)在直角坐标平面内,已知,对任意,试判断的形状; (Ⅱ)在平面内,已知中,,为的中点,交于,求证:.
.(本小题满分13分)一个几何体的直观图及三视图如图所示,分别是的中点. (Ⅰ)写出这个几何体的名称; (Ⅱ)求证:; (Ⅲ)求多面体的体积.