(本题6分)如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心. (Ⅰ)求圆锥的表面积; (Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,求截得的圆台的体积.
(本题满分12分)已知函数在定义域上是奇函数,又是减函数。 (Ⅰ)证明:对任意的,有 (Ⅱ)解不等式。
已知函数是在上每一点处均可导的函数,若在上恒成立。 (1)①求证:函数在上是增函数; ②当时,证明:; (2)已知不等式在且时恒成立,求证:…
如图,在底面是直角梯形的四棱锥P—ABCD中,AD∥BC,∠DAB=90º,PA⊥平面ABCD,PA=AB=BC=1,AD=2,M是PD的中点。 (1)求证:MC∥平面PAB; (2)在棱PD上求一点Q,使二面角Q—AC—D的正切值为。
已知数列、满足:,,。 (1)求数列的通项公式; (2)若,求数列{}的前n项和。
已知函数 (1)求的单调区间以及极值; (2)函数的图像是否为中心对称图形?如果是,请给出严格证明;如果不是,请说明理由。