(本题6分)如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心. (Ⅰ)求圆锥的表面积; (Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,求截得的圆台的体积.
(本小题满分14分)数列和数列由下列条件确定: ①; ②当时,与满足如下条件:当时,;当时,。 解答下列问题: (Ⅰ)证明数列是等比数列; (Ⅱ)求数列的前n项和为; (Ⅲ)是满足的最大整数时,用表示n的满足的条件。
(本题20分,第1小题满分4分,第2小题满分6分,第3小题6分,第4小题4分) 我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。 (1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1·d2的值,并判断直线L与椭圆M的位置关系。 (2)设F1、F2是椭圆的两个焦点,点F1、F2到直线(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1·d2的值。 (3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。 (4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
集合A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当a取什么实数时,A∩B 和A∩C=同时成立.
证明:
求证: