(本小题满分14分)已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛物线的焦点F.(I)求抛物线和椭圆的标准方程;(II)过点F的直线交抛物线于A、B两不同点,交轴于点N,已知,求证:为定值.(III)直线交椭圆于P,Q两不同点,P,Q在x轴的射影分别为,,,若点S满足:,证明:点S在椭圆上.
在中,角所对的边分别为,且满足, (1)求的面积;(2)若,求的值.
(本小题满分13分)已知函数,. (Ⅰ)设(其中是的导函数),求的最大值; (Ⅱ)求证: 当时,有; (Ⅲ)设,当时,不等式恒成立,求的最大值.
(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。 (1)求椭圆E的方程; (2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。
(本小题满分13分).某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元. (Ⅰ)写出关于的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的.
(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA. (1)求异面直线PA与CD所成的角; (2)求证:PC∥平面EBD; (3)求二面角A—BE--D的余弦值.