(本小题满分12分)设实数满足(其中;实数满足方程为双曲线.若是的必要不充分条件,求实数的取值范围.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.(1)求证:GH∥平面CDE;(2)求证:面ADEF⊥面ABCD.
已知向量a=(2cosx,2sinx),b=(cosx,cosx),设函数f(x)=a•b-,求:(1)f(x)的最小正周期和单调递增区间;(2)若, 且α∈(,π). 求α.
如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。试建立适当的直角坐标系,解决下列问题:(1)若∠PAB=30°,求以MN为直径的圆方程;(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.(1)求证:平面;(2)设点在棱上,当为何值时,平面平面?
(理)已知⊙:和定点,由⊙外一点向⊙引切线,切点为,且满足.(1)求实数间满足的等量关系;(2)求线段长的最小值;(3)若以为圆心所作的⊙与⊙有公共点,试求半径取最小值时的⊙方程.