如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
已知函数为常数)(1)若上单调递增,且(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数的图象在直线的下方,求c的取值范围.
(14分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米,(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(本题18 分)已知数列:、、且(),与数列:、、、且().记.(1)若,求的值;(2)求的值,并求证当时,;(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(1)画散点图(2)如果y对x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:,)
.已知是复数,,均为实数(为虚数单位)且复数在复平面上对应的点在第一象限,求复数及实数的取值范围.