如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2-PB2=4,求点P的轨迹;(2)设x1=2,x2=,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
已知函数是定义在上的奇函数,当时,; (1)当时,求的表达式; (2)在(1)的条件下,求函数的最大值.
设,,其中; (1)若∥,求的值; (2)若函数,,,若对于任意恒成立,求的取值范围.
已知平面向量,且∥,, (1)求与; (2)若,,求向量的夹角的大小.
已知函数, (1)求该函数的最大值,并求出函数取最大值时自变量的取值集合; (2)若该函数向左平移(个单位后为奇函数,求出的一个值.
如图,中,点是中点,点是中点, 设,, (1)用表示向量; (2)若点在上,且, 求.