如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2-PB2=4,求点P的轨迹;(2)设x1=2,x2=,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.(Ⅰ)求B;(Ⅱ)若,设,,求函数的解析式和最大值.
(本小题满分10分)选修4—5:不等式选讲已知函数,,.(Ⅰ)当时,若对任意恒成立,求实数b的取值范围;(Ⅱ)当时,求函数的最小值.
(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中曲线的极坐标方程为,点. 以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为的直线l过点M,且与曲线C交于A,B两点.(Ⅰ)求出曲线C的直角坐标方程和直线l的参数方程;(Ⅱ)求点M到A,B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲如图,在△ABC中,,以为直径的⊙O交于,过点作⊙O的切线交于,交⊙O于点.(Ⅰ)证明:是的中点;(Ⅱ)证明:.
(本小题满分12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值; (Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.