如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2-PB2=4,求点P的轨迹;(2)设x1=2,x2=,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
(本小题满分12分)某地区上年度电价为0.8元/kW·h,年用电量为akW·h,本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h,经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(Ⅰ)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(Ⅱ)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价-成本价))
(本小题满分12分)设函数图像的一条对称轴是直线。(Ⅰ)求的值;(Ⅱ)求函数的单调增区间;(Ⅲ)画出函数在区间上的图像。(要列表)
(本小题满分12分)已知函数(其中), (Ⅰ) 求函数的最小正周期;(Ⅱ)求函数的最大值与最小值,并求取最大值、最小值时x的值;(Ⅲ)写出f(x)的图象是由y=sinx的图象如何变换得到的.
(本小题满分12分). 设R, 且, 定义在区间内的函数是奇函数.(Ⅰ)求的取值范围;(Ⅱ)讨论函数的单调性,并加以证明.
(本小题满分10分)已知<<<,(Ⅰ)求的值.(Ⅱ)求.