(本小题满分12分) 已知 R.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值,并指出此时x的值.
已知数列满足. (Ⅰ)证明数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)设,求数列的前项和.
(本题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点. (Ⅰ) 求证:平面; (Ⅱ) 求证:; (Ⅲ) 求二面角的余弦值.
(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品. (Ⅰ)求这箱产品被用户接收的概率; (Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.
(本题满分12分) 在中,分别是角的对边,,. (Ⅰ)求的值; (Ⅱ)若,求边的长.
设函数,的两个极值点为,线段的中点为. (1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心; (2) 如果点在第四象限,求实数的范围; (3) 证明:点也在函数的图象上,且为函数图象的对称中心.