(本小题满分14分)已知函数.(1)若函数f(x)在上为增函数,求实数a的取值范围;(2)当a=1时,求f(x)在上的最大值和最小值;(注)(3)当a=1时,求证:对大于1的任意正整数n,均有.
试比较下列各式的大小(不写过程)1-与- -与-通过上式请你推测出-与-(n2,nN)的大小,并用分析法证明
某电脑公司有6名产品推销员,其中5名产品推销员工作年限与年推销金额数据如下表:
(Ⅰ) 求年推销金额关于工作年限的线性回归方程(Ⅱ)若第6名推销员的工作年限为11年,试估计他的年推销金额.
已知复数,求实数a、b 的值.
已知数列满足,是的前项的和,并且.(1)求数列的前项的和;(2)证明:
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B.(1)求椭圆的方程;(2)求的值(O点为坐标原点);(3)若坐标原点O到直线的距离为,求面积的最大值.