(本小题满分12分)在棱长为1的正方体中,分别是棱的中点.(1)证明:平面;(2)证明:;(3)求三棱锥的体积.
某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=.假定该产品生产销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产量x应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少元?
已知集合. (1)当时,求; (2)求使的实数的取值范围.
已知z为复数,和均为实数,其中是虚数单位. (1)求复数z; (2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
(1)已知函数f(x)=x-ax+(a-1),。讨论函数的单调性; (2).已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。
如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。 (I)求证:直线CE//平面ABF; (II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. (Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD