为了美化环境,在一块正方形空地上分别种植四种不同的花草。现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等。现已有两种不同的分法:(1)分别作两条对角线(图11)(2)过一条边的三等分点作这边的垂线段(图12)(图12中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).
已知线段a和b,求作线段MN,使MN=a+b.(不要求写作法,但要保留痕迹)
先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.
某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个): 经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题: (1)计算两班的优秀率. (2)求两班比赛成绩的中位数. (3)估计两班比赛数据的方差哪一个小? (4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的由.
(1)求一次函y=2x﹣2的图象l1与y=x﹣1的图象l2的交点P的坐标. (2)求直线l1与y轴交点A的坐标;求直线l2与x轴的交点B的坐标; (3)求由三点P、A、B围成的三角形的面积.
甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?