(1) (2)
如图,在平面直角坐标系 xOy中,直线 y=﹣ x+3与 x轴交于点 C,与直线 AD交于点 A 4 3 , 5 3 ,点 D的坐标为(0,1)
(1)求直线 AD的解析式;
(2)直线 AD与 x轴交于点 B,若点 E是直线 AD上一动点(不与点 B重合),当△ BOD与△ BCE相似时,求点 E的坐标.
如图,某无人机于空中 A处探测到目标 B, D,其俯角分别为30°,60°,此时无人机的飞行高度 AC为60 m,随后无人机从 A处继续飞行30 3 m,到达 A′处,
(1)求 A, B之间的距离;
(2)求从无人机 A′上看目标 D的俯角的正切值.
如图,利用尺规,在△ ABC的边 AC上方作∠ CAE=∠ ACB,在射线 AE上截取 AD= BC,连接 CD,并证明: CD∥ AB(尺规作图要求保留作图痕迹,不写作法)
已知 A = ( a + b ) 2 - 4 ab ab ( a - b ) 2 ( ab≠0且 a≠ b)
(1)化简 A;
(2)若点 P( a, b)在反比例函数 y=﹣ 5 x 的图象上,求 A的值.
某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办"玩转数学"比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:
小组
研究报告
小组展示
答辩
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;
(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?