如图,某无人机于空中 A处探测到目标 B, D,其俯角分别为30°,60°,此时无人机的飞行高度 AC为60 m,随后无人机从 A处继续飞行30 3 m,到达 A′处,
(1)求 A, B之间的距离;
(2)求从无人机 A′上看目标 D的俯角的正切值.
(年广东佛山10分)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图甲写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外) (2)如图乙,在▱ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推. 若ABCD的周长为1,直接用算式表示各四边形的周长之和l; (3)借助图形丙反映的规律,猜猜l可能是多少?
(年辽宁大连12分)如图甲,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图甲中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由; (2)求证:BE=EC; (3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图乙).当AB=1,∠ABC=α时,求BE的长(用含k、α的式子表示).
(2014年江苏南京11分)【问题提出】 学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究. 【初步思考】 我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究. 【深入探究】 第一种情况:当∠B是直角时,△ABC≌△DEF. (1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF. (2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等. (3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹) (4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
(年湖南张家界10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连结BE交AC于点F,连结DF. (1)证明:△CBF≌△CDF; (2)若AC=,BD=2,求四边形ABCD的周长; (3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
(年湖南湘潭10分)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC。 (1)求证:△BDF∽△CEF; (2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值; (3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.