过椭圆的右焦点F作直线交椭圆于M,N两点,设(1)求直线的斜率;(2)设M,N在直线上的射影分别为M1,N1,求的值
选修4-1:几何证明选讲 如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧的中点,连结AD并延长与过点C的切线交于点P,OD与BC相交于点E。 (1)求证:; (2)求证:
已知函数在上为增函数, (1)求的值; (2)若在上为单调函数,求的取值范围; (3)设,若在上至少存在一个,使得成立,求的范围。
如图,设抛物线的焦点为,动点在直线上 运动,过P作抛物线C的两条切线PA,PB,且与抛物线C分别相切于A,B两点. (1)求△APB的重心G的轨迹方程. (2)证明∠PFA=∠PFB.
已知正方形ABCD的边长为2,, 将正方形ABCD沿对角线BD折起,使,得到三棱锥,如图所示。 (1)当a=2时,求证:平面BCD; (2)当二面角的大小为时, 求二面角的正切值。
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。 (1)求①号面需要更换的概率; (2)求6个面中恰好有2个面需要更换的概率; (3)写出的分布列,求的数学期望。