(本小题满分14分)某单位为解决职工的住房问题,计划征用一块土地盖一幢总建筑面积为的宿舍楼.已知土地的征用费为2388元/,且每层的建筑面积相同,土地的征用面积为第一层的2.5倍.经工程技术人员核算,第一.二层的建筑费用都为445元/,以后每增高一层,其建筑费用就增加30元/.试设计这幢宿舍楼的楼高层数,使总费用最小,并求出其最小费用.(总费用为建筑费用和征地费用之和)
(本小题满分14分)已知长方形,,,以的中点为原点建立如图所示的平面直角坐标系.(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最小值。
(本小题满分14分)如图所示,在四棱锥中,平面,,,,是的中点.(1)证明:平面;(2)若,,,求二面角的正切值.
(本小题满分12分)已知数列{an}的前n项和,,且Sn的最大值为8.(1)确定常数k的值,并求通项公式an;(2)求数列的前n项和Tn。
(本小题满分12分)函数()的最大值为1,对任意,有。(1)求函数的解析式;(2)若,其中,求的值。
(本题满分14分)设(为实常数).(1)当时,证明:不是奇函数;(2)设是奇函数,求与的值;(3)当是奇函数时,证明对任何实数、c都有成立