(本小题满分12分)某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设(Ⅰ)求他们选择的项目所属工程类别相同的概率;(Ⅱ)记为3人中选择的项目属于B类工程或C类工程的人数,求的分布列及数学期望.
已知函数.(1)求函数的单调递减区间;(2)若,证明:.
已知为实数,(1)求导数;(2)若,求在[-2,2] 上的最大值和最小值;(3)若在和上都是递增的,求的取值范围.
若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点、组成一个正三角形,焦点到椭圆上的点的最短距离为.(1)求椭圆的方程;(2)过点作直线与椭圆交于、两点,线段的中点为,求直线的斜率的取值范围.
已知直线与双曲线交于两点,(1)若以线段为直径的圆过坐标原点,求实数的值。(2)是否存在这样的实数,使两点关于直线对称?说明理由.
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.(1)求椭圆的方程;(2)求直线的方程.