已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
已知等比数列的前 项和为,公比且,求数列的通项公式;
已知集合,求
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列. (1)求该弦椭圆的方程; (2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线相交所得线段中点的横坐标为,求这个双曲线方程。
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE//平面FCC;求二面角B-FC-C的余弦值。