已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
(本小题满分13分)设函数,已知是奇函数.(Ⅰ)求、的值; (Ⅱ)求的单调区间与极值.
(本小题满分13分)已知的展开式中第五项的系数与第三项的系数的比是10:1(1)求展开式中各项系数的和;(2)求展开式中含的项;
(本小题满分13分)4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字做答)(1)教师必须坐在中间;(2)教师不能坐在两端,但要坐在一起;(3)教师不能坐在两端,且不能相邻.
已知函数(为自然对数的底数),(为常数),是实数集 上的奇函数.(1)求证:;(2)讨论关于的方程:的根的个数;(3)设,证明:(为自然对数的底数).
已知平面上两定点C(1,0),D(1,0)和一定直线,为该平面上一动点,作,垂足为Q,且(1)问点在什么曲线上,并求出曲线的轨迹方程M;(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.