已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
(本小题满分10分)选修4-1:几何证明选讲如图,在中,是的角平分线,的外接圆交于点,.(Ⅰ)求证:;(Ⅱ)当,时,求的长.
(本小题满分共12分)已知. 设.(Ⅰ)求在上的最大值.(Ⅱ)当时,试比较与的大小,并证明.
(本小题满分12分)已知点为轴上的动点,点为轴上的动点.点为定点,且满足,(Ⅰ)求动点的轨迹的方程.(Ⅱ)是上的两个动点,为的中垂线,求当的斜率为2时,在轴上的截距的范围.
(本小题满分12分)为了分流地铁高峰的压力,市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,,甲、乙乘车超过公里且不超过公里的概率分别为, .(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.
(本小题满分12分)如图1,在矩形中,,,将沿矩形的对角线翻折,得到如图2所示的几何体,使得=.(Ⅰ)求证:;(Ⅱ)若在上存在点,使得,求二面角的余弦值.