已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
设函数=的图象的对称中心为点(1,1).(1)求的值; (2)若直线=(∈R)与的图象无公共点,且<2+,求实数的取值范围.
、已知的图象过点(-1,-6),且函数的图象关于y轴对称。(1)求m,n的值及函数的单调区间;(2)若a>0,求函数在区间内的极值。
已知求的值。
(14分)已知函数. (1)求函数的单调区间和极值. (2)若对满足的任意实数恒成立,求实数的取值范 围(这里是自然对数的底数). (3)求证:对任意正数、、、,恒有 .
(12分)设数列满足:,且当时,. (1)比较与的大小,并证明你的结论. (2)若,其中,证明.