已知函数. (1)当时,求在区间上的最大值和最小值; (2)如果函数,,,在公共定义域D上,满足,那么就称为为的“活动函数”. 已知函数,. ①若在区间上,函数是,的“活动函数”,求的取值范围; ②当时,求证:在区间上,函数,的“活动函数”有无穷多个.
(本小题满分13分)已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.(1)求动点P所在曲线C的方程;(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=;(3)记,,(A、B、是(2)中的点),,求的值.
(本小题满分13分)已知数列中,(1)求数列的通项公式;(2)设(3)设是否存在最大的整数m,使得对任意,均有成立?若存在,求出m,若不存在,请说明理由。
(本小题满分12分)已知函数f(x)=(1+x)2-ln(1+x),(1)求f(x)的单调区间;(2)若x∈时,f(x)<m恒成立,求m的取值范围.
(本小题满分13分)某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
(Ⅰ)求回归直线方程;(Ⅱ)试预测广告费支出为10万元时,销售额多大?(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率。(参考数据: ,参考公式:回归直线方程,其中 )
(本小题满分12分)如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(Ⅰ)求证:DC平面ABC;(Ⅱ)设,求三棱锥A-BFE的体积.