箱子里有3双不同的手套,随机拿出2只,记事件A表示“拿出的手套配不成对”;事件B表示“拿出的都是同一只手上的手套”.(1)请列出所有的基本事件;(2)分别求事件A、事件B的概率.
(本小题满分12分) 已知向量 (1)求a·b及|a+b|; (2)若的最小值是,求实数的值。
(本小题满分12分)已知函数, 且函数的最小正周期为 (1)若,求函数的单调递减区间; (2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图象再向左平移个单位,得到函数的图象,求函数在区间上的最小值。
(本小题满分12分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1. (I)证明PA⊥平面ABCD; (II)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论
(本小题满分12分) 已知数列是公差不为零的等差数列,且,又成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)设为数列的前项和,求使成立的所有的值.
(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和 (1)若,求的值; (2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立; (3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。