(、(本题16分)如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形的形状,使得都落在抛物线上,点关于抛物线的轴对称,且,抛物线的顶点到底边的距离是,记,梯形面积为.(1)以抛物线的顶点为坐标原点,其对称轴为轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;(2)求面积关于的函数解析式,并写出其定义域;(3)求面积的最大值.
如图,在正方体中,是棱的中点. (Ⅰ)证明:平面; (Ⅱ)证明:.
从编号为1,2,3,4,5的五个形状大小相同的球中,任取2个球,求:(1)取到的这2个球编号之和为5的概率;(2)取到的这2个球编号之和为奇数的概率.
已知为等差数列,且 (1)求数列的第二项; (2)若成等比数列,求数列的通项.
已知两条直线与的交点,求:(1)过点且过原点的直线方程;(2)过点且垂直于直线的直线的方程。
设函数. (1)讨论的奇偶性; (2)当时,求的单调区间; (3)若对恒成立,求实数的取值范围.