(、(本题16分)如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形的形状,使得都落在抛物线上,点关于抛物线的轴对称,且,抛物线的顶点到底边的距离是,记,梯形面积为.(1)以抛物线的顶点为坐标原点,其对称轴为轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;(2)求面积关于的函数解析式,并写出其定义域;(3)求面积的最大值.
(本小题满分12分)已知函数(为常数,为自然对数的底数)是实数集上的奇函数,函数在区间上是减函数. (1)求实数的值; (2)若在上恒成立,求实数的取值范围; (3)讨论关于的方程的根的个数.
(本小题满分12分)已知等比数列是递增数列,,数列满足,且() (1)证明:数列是等差数列; (2)若对任意,不等式总成立,求实数的最大值.
如图,在中,边上的中线长为3,且,. (1)求的值; (2)求边的长.
(本小题满分12分)f(x)=.,其中向量=(m,cos2x),=(1+sin2x,1),,且函数的图象经过点. (Ⅰ)求实数的值. (Ⅱ)求函数的最小值及此时值的集合。
已知等差数列中,. (1)求数列的通项公式; (2)令,证明:.