(本小题满分9分)在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
设函数(且)是定义域为R的奇函数. (Ⅰ)求t的值; (Ⅱ)若,求使不等式对一切R恒成立的实数k的取值范围; (Ⅲ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
已知函数. (Ⅰ)求的最小正周期及对称中心; (Ⅱ)若,求的最大值和最小值.
已知. (Ⅰ)求的值; (Ⅱ)求的值.
已知函数,. (Ⅰ)列表并画出函数在上的简图; (Ⅱ)若,,求.
求证:.