(本小题满分9分)在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点.(1)求证:EF//平面A′BC;(2)求直线A′B与平面A′DE所成角的正切值.
已知点P与两个定点O(0,0),A(-3,0)距离之比为. (1)求点P的轨迹C方程; (2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.
如图,在直三棱柱ABC-A1B1C1中,底面为等腰直角三角形,AC⊥BC,点D是AB的中点,侧面BB1C1C是正方形. (1) 求证AC⊥B1C;(2)求二面角B-CD-B1平面角的正切值.
已知直线l经过A,B两点,且A(2,1), =(4,2). (1)求直线l的方程; (2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.
已知奇函数在上是增函数,且① 确定函数的解析式;② 解不等式<0.