(本小题满分9分)在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点. 证明:直线平面; (2) 若,求二面角的平面角的余弦值.
设数列的前项和为, 已知,,,是数列的前项和. (1)求数列的通项公式;(2)求; (3)求满足的最大正整数的值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=. (1)若△ABC的面积S=,求b+c的值. (2)求b+c的取值范围.
已知() (1)若方程有3个不同的根,求实数的取值范围; (2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
抛物线,直线过抛物线的焦点,交轴于点. (1)求证:; (2)过作抛物线的切线,切点为(异于原点), (ⅰ)是否恒成等差数列,请说明理由; (ⅱ)重心的轨迹是什么图形,请说明理由.