(本小题满分9分)在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
(本小题满分14分) 在ABC中,BC=,AC=3,sinC="2sinA" (I)求AB的值: (II) 求sin的值.
(本小题满分14分) 已知:集合集合 (1)若,求实数m的取值范围(2)若集合,,求实数m的取值范围.
本小题满分16分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为 (1)求的值及的表达式; (2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围; (3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由.
(本小题满分16分)数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上. (1)若数列{an+c}成等比数列,求常数c的值; (2)求数列{an}的通项公式; (3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(本小题满分15分)、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米. (1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式; (2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?