20.(本小题满分8分)如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC = 30°,PA = AB. (1)求证:平面PAC⊥平面PBC;(2)求直线PC与平面ABC所成角的正切值;(3)求二面角A—PB—C的正弦值.
选修4-4:坐标系与参数方程 已知曲线的极坐标方程是,曲线的参数方程是是参数). (1)写出曲线的直角坐标方程和曲线的普通方程; (2)求的取值范围,使得,没有公共点.
选修4-1:几何证明选讲 如图所示,已知与⊙相切,为切点,为割线,弦,、相交于点,为上一点,且 (1)求证:; (2)(2)求证:·=·.
已知函数, (1)求为何值时,在上取得最大值; (2)设,若是单调递增函数,求的取值范围.
如图,已知椭圆的长轴为,过点的直线与轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率 (1)求椭圆的标准方程; (2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系.
如图,四棱锥的侧面垂直于底面,,,,在棱上,是的中点,二面角为 (1)求的值; (2)求直线与平面所成角的正弦值.