(本题满分12分)某文具店购进一批新型台灯,若按每盏台灯15元的价格销售. 每天能卖出30盏,若售价每提高1元,日销售量将减少2盏.(1)设这批台灯提价后每盏的销售价格定为,销售收入为,写出.(2)为了使这批台灯每天获得400元以上的销售收入,问应如何制定这批台灯每盏的销售价格范围?
已知函数 f ( x ) = 1 4 x 3 - x 2 + x .
(Ⅰ)求曲线 y = f ( x ) 的斜率为1的切线方程;
(Ⅱ)当 x ∈ [ - 2 , 4 ] 时,求证: x - 6 ≤ f ( x ) ≤ x ;
(Ⅲ)设 F ( x ) = | f ( x ) - ( x + a ) | ( a ∈ R ) ,记 F ( x ) 在区间 [ - 2 , 4 ] 上的最大值为 M a ,当 M a 最小时,求 a 的值.
已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 的右焦点为 ( 1 , 0 ) ,且经过点 A ( 0 , 1 ) .
(Ⅰ)求椭圆 C的方程;
(Ⅱ)设 O为原点,直线 l : y = kx + t ( t ≠ ± 1 ) 与椭圆 C交于两个不同点 P, Q,直线 AP 与 x轴交于点 M,直线 AQ 与 x轴交于点 N,若 | OM | · | ON | = 2 ,求证:直线 l经过定点.
如图,在四棱锥 P - ABCD 中, PA ⊥ 平面 A B C D ,底部 ABCD为菱形, E为 CD的中点.
(Ⅰ)求证: BD ⊥ 平面 P A C ;
(Ⅱ)若 ∠ ABC = 60 ° ,求证: 平面 PAB ⊥ 平面 PAE ;
(Ⅲ)棱 PB上是否存在点 F,使得 CF ∥ 平面 PAE ?说明理由.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额
支付方式
不大于 2000 元
大于 2000 元
仅使用A
27人
3人
仅使用B
24人
1人
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 2000 元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 2000 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 2000 元的人数有变化?说明理由.
设 { a n } 是等差数列, a 1 = – 10 ,且 a 2 + 10 , a 3 + 8 , a 4 + 6 成等比数列.
(Ⅰ)求 { a n } 的通项公式;
(Ⅱ)记 { a n } 的前 n项和为 S n ,求 S n 的最小值.