某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试,①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率;②学校决定在这6名学生中随机抽取2名学生接受考官的面试,第4组中有名学生被考官面试,求的分布列和数学期望.
已知函数 (1)若函数的图象切x轴于点(2,0),求a、b的值; (2)设函数的图象上任意一点的切线斜率为k,试求的充要条件; (3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为. (1)求椭圆C的方程和其“准圆”方程; (2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数, 数列满足. (1)求数列的通项公式; (2)令,若对一切成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G. (l)求证:EG∥; (2)求二面角的余弦值; (3)求正方体被平面所截得的几何体的体积.
下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天. (l)求此人到达当日空气重度污染的概率; (2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。