如图,已知椭圆的长轴为,过点的直线与轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率(1)求椭圆的标准方程;(2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系.
设,其中a为正实数, (1)当的极值点; (2)若为R上的单调函数,求a的取值范围。
△ABC中,已知,记角A,B,C的对边 依次为a,b,c, (1)求∠C大小; (2)若c=2,且△ABC为锐角三角形,求a2+b2取值范围。
12分)设,在由直线及坐标轴所围成的区域内任意 投一质点M,点M落在由曲线所围成的区域内概率为,求 a值。
直线 l 被两直线 截得线段中点是M (0,1),求l方程。
已知函数f(x)=x-ax+(a-1),。 (1)讨论函数的单调性; (2)证明:若,则对任意x,x,xx,有。